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Transient deformation of elastic capsules in shear flow: Effect of membrane bending stiffness
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The transient deformation of liquid capsules enclosed by elastic membranes with bending rigidity in shear
flow has been studied numerically, using an improved immersed boundary-lattice Boltzmann method. The
purpose of the present study is to investigate the effect of interfacial bending stiffness on the deformation of
such capsules. Bending moments, accompanied by transverse shear tensions, usually develop due to a preferred
membrane configuration or its nonzero thickness. The present model can simulate flow induced deformation of
capsules with arbitrary resting shapes (concerning the in-plane tension) and arbitrary configurations at which
the bending energy has a global minimum (minimum bending-energy configurations). The deformation of
capsules with initially circular, elliptical, and biconcave resting shapes was studied; the capsules’ minimum
bending-energy configurations were considered as either uniform-curvature shapes (like circle or flat plate) or
their initially resting shapes. The results show that for capsules with minimum bending-energy configurations
having uniform curvature (circle or flat plate), the membrane carries out tank-treading motion, and the steady
deformed shapes become more rounded if the bending stiffness is increased. For elliptical and biconcave
capsules with resting shapes as minimum bending-energy configurations, it is quite interesting to find that with
the bending stiffness increasing, the capsules’ motion changes from tank-treading mode to flipping mode, and

resembles Jeffery’s flipping mode at large bending stiffness.
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I. INTRODUCTION

The deformation of a liquid capsule enclosed by a thin
elastic or incompressible membrane in simple shear flow has
been studied by many researchers in cellular biology,
bioengineering, and chemical engineering. It is important not
only in fundamental research, but also in medical and indus-
trial applications. For example, in blood diseases like cere-
bral malaria and sickle cell anemia, the red blood cells lose
their ability to deform and often block the capillaries due to
the membranes becoming stiffer. To design clinical therapies
for such blood diseases, it is needed to understand how the
interfacial mechanical properties affect the deformation of
cells under flow. The capsule deformation is also important
in other areas, such as microencapsulation, to design cap-
sules with desired properties.

The dynamic motion of an elastic capsule under simple
shear flow has been studied experimentally [1-4], theoreti-
cally [5-8], and numerically [9-17]. Previous researchers
have found that there are mainly three types of motion: a
steady mode in which the capsule deforms to a stationary
configuration with the membrane rotating around the internal
liquid (tank treading), and an unsteady mode in which the
capsule tumbles continuously. The transition from tank tread-
ing mode to flipping mode due to increasing the viscosity of
internal fluid has been studied in Refs. [7,11,13,14]; the
mode transition due to increasing the viscosity of membrane
has been studied in Refs. [15,16]. Recently, Misbah [8] has
theoretically predicted a new unsteady mode under the con-
dition that the viscosity contrast of the internal and the ex-
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ternal fluids is large. In this mode the capsule inclination
undergoes oscillation around the flow while the shape ex-
ecutes breathing dynamics. This vacillating-breathing mode
coexists with the tumbling mode.

For liquid filled capsules enclosed by an elastic mem-
brane, flow induced deformation causes the development of
not only in-plane elastic tensions, but also bending moments
accompanied by transverse shear tensions. The interfacial
bending moments develop physically due to the nonzero
membrane thickness; the bending moments may also be gen-
erated because the membrane has a preferred configuration
due to its certain structure. The bending moments are ex-
pressed by a constitutive law which involves the instanta-
neous Cartesian curvature tensor, curvature of the minimum
bending-energy configuration, and the bending modulus. The
bending modulus is generally independent of the in-plane
elasticity modulus, and describes the flexural stiffness of the
membrane.

For fluid capsules enclosed by a lipid-bilayer membrane,
such as red blood cells, the bending stiffness has been found
quite important in determining the equilibrium configuration
and shape oscillations [18,19]. For nonequilibrium condi-
tions such as capsules under flow, membrane bending rigid-
ity also plays a significant role in avoiding the development
of wrinkling and folding. For capsules whose membrane has
a preferred configuration, it can be expected that bending
stiffness will ensure that the capsule shape should not deviate
greatly from its preferred profile. It is thus meaningful to
investigate the effect of bending stiffness on the flow-
induced deformation of liquid filled capsules enclosed by an
elastic membrane. However, this effect has not been explored
much and most previous studies neglected bending resis-
tance. A numerical study of Pozrikidis [12] showed that
bending stiffness has a significant effect on the steady con-
figuration of elastic capsules in simple shear flow. However,
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FIG. 1. Schematic illustration of a 2D capsule in simple shear
flow.

an important restriction was the requirement that the mini-
mum bending-energy shape has uniform curvature. So far,
there is no study on the transient deformation of elastic cap-
sules whose minimum bending-energy configuration has
nonuniform curvature.

In the present study, the transient deformation of two-
dimensional (2D) elastic capsules, filled with a Newtonian
liquid similar to that outside, is studied numerically under a
simple shear flow condition. The purpose of the present
study is to investigate the effect of membrane preferred mini-
mum bending-energy configurations (with uniform or non-
uniform curvature) and interfacial bending stiffness on the
deformation of such capsules. One must acknowledge that
the 2D model is a large simplification; however, previous
studies [10,13,14] have provided sufficient grounds which
show that the 2D study maintains most common features of
the 3D capsule motion; for example, the transition from tank
treading mode to flipping mode.

The present study is based on the immersed boundary-
lattice Boltzmann method which was proposed by Feng and
Michaelides [20] to study particulate flow. It combines the
immersed boundary method [21,22] with the lattice Boltz-
mann method [23-25] and keeps the merits of both methods.
Recently, the present authors Sui ef al. [17,26] improved this
method by employing the multiblock strategy of Yu [27].
The computational domain is divided into blocks with differ-
ent mesh resolutions, and fine mesh only covers the region
near the moving boundaries. This has substantially improved
the accuracy and efficiency of the simulation.

In the present study, the simulation of capsules deforma-
tion is based on the improved approach [26]. The flow field
is solved by the lattice Boltzmann method, the fluid-capsule
interaction is solved by the immersed boundary method, and
the multiblock strategy is used to refine the mesh around the
deforming capsule. The present model has been validated in
a previous study [17], in which the bending stiffness is ne-
glected.

II. MODEL AND METHOD
A. Interfacial mechanics

In the present study, the deformation of a 2D capsule is
considered to be subjected to the two-dimensional incident
shear flow along the x axis u=(ky,0) as illustrated in Fig. 1.
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The unit tangent vector t is pointing in the direction of in-
creasing arc length and n is the unit normal vector pointing
into the ambient fluid.

During the capsule deformation, the velocity across the
interface is continuous in order to satisfy the nonslip condi-
tion. But there is a jump of the interfacial tension AF, which
is in the form of [28]

dT

AF=AF"n+AF't=- =
dl

d

St am). (1)
where T is the membrane tension, consisting of the in-plane
tension 7 and transverse shear tension g. The in-plane tension
7 is obtained from the membrane’s constitutive law. In the
present study, Hooke’s law is employed due to its simplicity;
however, it is sufficient to take deformability into account. It

has the form
T= (L(t) - 1), (2)

where E represents the interfacial elasticity modulus, [(z) is
the membrane length at time ¢, and /; is the unstressed mem-
brane length. The transverse shear tension ¢ is expressed in
terms of bending moment m as follows:

dm

=" (3)

The bending moment is given by

m=Eg[k(l) — ky(D)], 4)

where Ej is the bending modulus, «(I) is the instantaneous
membrane curvature, and (/) is the curvature of membrane
at minimum bending-energy configuration [29].

In the present simulation, there is no special constraint for
the volume of the capsule. The results show that the volume
change during capsule deformation is less than 0.1%.

Due to the small length scale (107°~107> m) of the cap-
sule and the small surrounding fluid velocity
(1073-107% m/s), the initial effect is neglected. Two dimen-
sionless parameters are believed to play an essential role in
determining the capsule deformation. One is the dimension-
less shear rate G, which determines the relative importance
of shearing and elasticity, in the form of

G="—, (5)

where w is the viscosity of the surrounding fluid, k is the
shear rate, and the term a is the equivalent radius, in the form
of a=(capsule area/ 7)*>. Another important parameter is the
reduced ratio of bending to elasticity moduli, in the form of

_Es
T &E

(6)

E,

B. Numerical method

The present simulation is based on a hybrid method of Sui
et al. [17,26]. The concept is based on introducing the im-
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FIG. 2. Schematic illustration of a body whose boundary has
been divided into Lagrangian nodes immersed in a Cartesian mesh.

mersed boundary method in the framework of the lattice
Boltzmann model, and using multiblock strategy to refine the
mesh near the moving boundary.

In the immersed boundary method of Peskin [21,22], a
force density is distributed to the Cartesian mesh in the vi-
cinity of the moving boundary in order to account for the
effect of the boundary. To explain this method, consider a
massless elastic capsule with boundary I immersed in the
fluid domain Q (see Fig. 2). The fluid domain () is repre-
sented by Eulerian coordinates x, while the boundary of the
capsule I, is represented by Lagrangian coordinates s. Any
position on the capsule membrane can be written as X(s, 7).
The term F(s,r) represents the membrane force density,
which is a combination of the internal link force induced by
deformation and the external force. The term f(s,?) repre-
sents the fluid body force density.

The nonslip boundary condition is satisfied by letting the
flexible structure move at the same velocity as the fluid
around it. That is,

dX(s,1)

P u(X(s,?),7). (7)

This motion will cause the capsule to deform. The boundary
force density F(s,7) is obtained from the constitutive law of
the capsule, and distributed to the fluid mesh points near it
by a dirac delta function, written as follows:

f(x,t):f F(s,1)8[x — X(s,7)]ds. (8)
r

The same Dirac delta function is used to obtain the velocities
of the Lagrangian nodes on the moving boundary. Details
were given by Sui ef al. [26].

The lattice Boltzmann method [23-25] is a kinetic-based
approach for simulating fluid flows. It decomposes the con-
tinuous fluid flow into pockets of fluid particles which can
only stay at rest or move to one of the neighboring nodes. In
the present study, the immersed boundary method is com-
bined with the lattice Boltzmann method. In order to solve
the flow field with a force density, the lattice Boltzmann
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equation (LBE) must be modified. Several forms of LBE
which can handle a force density have been proposed. Guo’s
approach [30] is more accurate for unsteady flow with force
changing with time and space, in which the modified lattice
Boltzmann equation is in the form of

fix + €At + At) - fi(x,1) =— %_[f[(x,t) = fi(x,0)] + AtF;,

)

where the term i is the velocity index; here the two-
dimension and nine-velocity model is employed. The term
fi(x,1) is the distribution function for particles with velocity
e; at position x and time 7, Ar is the lattice time interval,
fi4(x,1) is the equilibrium distribution function, and 7 is the
nondimensional relaxation time.

The equilibrium distribution function f{/(x,7) is in the
form of

fi'=Ep.u), (10)

with

) 2
E(pu)= w,-p{l P M} .
N 2CY
where w; is the weighing factor; it equals 4/9 for i=0, 1/9
for i=1-4, and 1/36 for i=5-8. The term c, represents the
sound speed, and equals Ax/(y3A1).
The relaxation time is related to the kinematic viscosity in
the Navier-Stokes equation in the form of

V=<T—%>C?Al. (12)

The forcing term F; is in the form of

Fi:(l—l>w{e"_2u+@ei]f. (13)
c

2T ; N

Once the particle density distribution is known, the fluid den-
sity and momentum are calculated, using

p=Sf. pu=efi+ %fAt. (14)

i

In the present paper, the multiblock strategy proposed by Yu
[27] is employed. The computational domain is divided into
blocks which are connected through the interface. On the
interface between blocks, the exchange of variables follows a
certain relation so that the mass and momentum are con-
served and the stress is continuous across the interface.

Consider a two-block system to explain the idea of the
multiblock method. The ratio of lattice space between the
two blocks is defined as m=Ax,/ Axf, where Ax, and Axf are
the lattice space of the coarse and fine mesh blocks, respec-
tively. For a given lattice space, the fluid viscosity can be
obtained from Eq. (12). In order to keep a constant viscosity,
the relaxation parameter 7, in fine mesh and 7. in coarse
mesh, must satisfy the following relation:
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1 1
Tf=5+m<7'c—§>. (15)

The variables and their derivatives on the grid must be con-
tinuous across the block interface. To keep this continuity,
the relation of the density distribution function in the neigh-
boring blocks is proposed as

Fom i e m = ()
! ! Tf—l ! ! ’
Fl=poce —L—— = [f; - f:%<1, (16)
m(TC_ 1)

where ]7, is the postcollision density distribution function.
As on each block the fluid particle has the same streaming

velocity, the computation marches m steps on the fine-mesh

block for every one step on the coarse-mesh block. On the

interface, spatial and temporal interpolation of f{ is needed to
complete the information exchange. A symmetric, cubic
spine fitting is employed for spatial interpolation and a three-
point Lagrangian formula is used for temporal interpolation.
The details of these interpolations are as given by Yu [27].

In the computation, a two-grid system is employed. The
lattice space ratio between coarse and fine grids equals two.
The elastic capsule is immersed in the fine mesh block. The
present procedure for multiblock computation was given in
detail by Sui et al. [26]. The numerical model has been vali-
dated in a previous study of Sui ef al. [17] for the reduced
bending modulus E,=0 under various dimensionless shear
rates.

III. RESULTS AND DISCUSSIONS
A. Initially circular capsules

The deformation of capsules with initially circular shape
in simple shear flow is studied. The initial shape is also the
resting shape concerning the in-plane tension. The results
presented in this section correspond to capsules whose initial
shape is also the minimum bending-energy profile. Capsules
with flat minimum bending-energy shape are found to be-
have in a similar way.

In the present study, all variables are normalized by the
characteristic length 2a, velocity 2ka, and time 1/k. The
Reynolds number based on the above characteristic length
and velocity was 0.05. The membrane shear elasticity modu-
lus was varied so that different dimensionless shear rates
were obtained and studied. The computational domain
ranged from O to 16a in both the x axis and the y axis.
Numerical experiment showed that the size of this computa-
tional domain is large enough to neglect the boundary effect.
The capsule was at the center of the domain, and its mem-
brane was equally discretized into 160 Lagrangian nodes.
The fine mesh block covered from 5a to 11a in both axes.
The other area was covered with coarse mesh. The grid reso-
lutions in fine and coarse block were Ax;=Ay;=0.05a and
Axy=Ay;=0.1a, respectively. Grid-independent study
showed that this mesh density was sufficient. The character-
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FIG. 3. Contours of steady deformed capsules with circular ini-
tial shape for various bending modulus at dimensionless shear rate:
(a) G=0.04 and (b) G=0.125.

istic velocity was set to be 1 X 1074, so that the relaxation
parameters in coarse block and fine block were 0.62 and
0.74, respectively.

The present results show that the capsules deform to
steady shapes and then the membrane rotates around the lig-
uid inside (tank-treading motion). Figure 3(a) presents a fam-
ily of configurations of steady deformed capsules for reduced
bending modulus E,=0-0.4 at the dimensionless shear rate
G=0.04. As expected, the effect of bending stiffness is ap-
parent. It restricts the global deformation of capsules, and
locally prevents the development of highly curved shapes at
the two tips. With the increase of the bending modulus, the
shapes of the steady deformed capsules become closer to a
circle and the orientations become less aligned with the flow
direction. If the shear rate is higher, as shown in Fig. 3(b) for
G=0.125, it is seen that the capsules are more deformed for
the same reduced bending modulus.

To quantitatively illustrate the effect of bending stiffness
on the capsules deformation, the temporal evolution of the
Taylor deformation parameter and inclination angle (with re-
spect to the x axis) are presented in Fig. 4, for G=0.04 and
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FIG. 4. Temporal evolution of
(b) Taylor deformation parameter for
(a) G=0.04 and (b) G=0.125; in-
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0.125. The Taylor deformation parameter is defined as D,,
=(L-B)/(L+B), where L and B are the length and width of
a capsule. The quantitative results confirm that increased
bending stiffness reduces the capsule deformation and makes
it less aligned with the flow. It is also seen that the time taken
to achieve steady shape is shorter under a lower dimension-
less shear rate or higher reduced bending modulus. That is
because the capsule only needs to deform a little to generate
enough elastic force to balance the viscous shear force.

After the capsule deforms to a steady configuration, its
membrane rotates around the liquid inside with period 7. The
normalized tank-treading frequency f=4/(kT) is presented
in Fig. 5 for various bending modulus at G=0.04 and 0.125.
It is seen that, with an increasing bending modulus, the di-
mensionless frequency asymptotically approaches towards
the value of unity, corresponding to that of a solid circular
cylinder in simple shear flow.

B. Initially elliptical capsules

In this section, the deformation of initially elliptical cap-
sules, with a semimajor to semiminor axes ratio of 2:1 and
equivalent radius a, is simulated under the dimensionless
shear rate G=0.04 and 0.125. The capsules are initially un-
stressed concerning the in-plane tension. Various resting con-
figurations concerning the bending moments are considered:
uniform curvature shapes (circle and flat plate) and nonuni-

form curvature shape (the initially elliptical configuration).
The computational domain, block system, mesh resolutions,
and characteristic scales are the same as that in the previous
section.

Consider first the minimum bending-energy shape having
uniform curvature shape which is circular. The area of the
circle is the same as that of the initially elliptical capsule.
Figures 6(a) and 6(b) present the configurations of steady
deformed capsules with the reduced bending modulus in-

0.5

0 0.1 0.2 0.3 0.4
E

b

FIG. 5. The normalized tank-treading frequency for various re-
duced bending modulus at G=0.04 and 0.125.
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FIG. 6. Configurations of steady deformed capsules with ellip-
tical initial shape and various bending modulus at dimensionless
shear rate: (a) G=0.04 and (b) G=0.125.

creasing up to 0.2, at the dimensionless shear rate G=0.04
and 0.125, respectively. The overall deformation of the cap-
sules is quite similar to that of the initially circular capsules.
As the bending modulus increases, the steady configurations
of capsules tend to become circular. Figures 7(a) and 7(b)
present the steady Taylor deformation parameters and incli-
nation angles of capsules with different bending modulus
ratios. It is shown from the results that as E, increases, the
Taylor deformation parameter decreases while the inclination
angle increases monotonically. The minimum bending-
energy shape having uniform curvature, which is flat, has
also been studied. It was found that they behave in a similar
way.

For a capsule membrane with a certain structure, com-
posed, for example, of polymeric or proteinic networks, the
membrane may prefer a certain resting configuration con-
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FIG. 7. Steady (a) Taylor deformation parameters and (b) incli-
nation angles of capsules with different reduced bending modulus at
G=0.04 and 0.125.

cerning the bending moments, due to the membrane struc-
ture. This preferred minimum bending-energy configuration
may have nonuniform curvature. However, the transient de-
formation of elastic capsules with minimum bending-energy
configuration having nonuniform curvature has not been
studied so far. In this section, the capsules’ initially elliptical
shape is chosen as the minimum bending-energy configura-
tion. The present membrane model is able to describe the
in-plane elasticity and bending moments, but it does not rep-
resent the polymerized structures of the membrane.

Without bending stiffness, it is well known that a capsule
will deform to a stationary shape with a finite inclination
angle, then the membrane rotates around the liquid inside, as
presented in Fig. 8(a). When there is bending stiffness, it will
try to keep the instantaneous curvature of the capsule akin to
its initial curvature.

(@) E =0 (b)

b

E, = 0.005 ©

- - /

E,=0.02

FIG. 8. Tank-treading motion of capsules with
the elliptical initial shape as the minimum
bending-energy configuration at different bending
modulus at G=0.04.
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FIG. 9. Rotating and deforming of an elliptical capsule with
E;,=0.06 at G=0.04. Corresponding dimensionless times are k=0
(a), 1.6 (b), 6.4 (c), and 8 (d).

From the present results, it is interesting to find that with
a finite but small bending modulus, the membrane still car-
ries out tank-treading motion. However, two protrusions de-
velop on the membrane and rotate around the liquid inside,
as presented in Figs. 8(b) and 8(c) for E,=0.005 and 0.02,
respectively. The animation of the capsule contours shows
that the capsule inclination is undergoing periodic oscillation
while the membrane with protrusions rotates. These observa-
tions are different from that of a capsule without bending
stiffness or with a minimum bending-energy shape of uni-
form curvature. As the bending modulus increases, the pro-
trusions become larger (see Fig. 8), and so does the oscilla-
tion amplitude of the capsule’s inclination angle.

When the reduced bending modulus reached 0.06, the mo-
tion of the capsule has changed from tank-treading mode to
flipping mode accompanied with periodic deformation. Fig-
ure 9 presents a series of capsule contours for £,=0.06 and
G=0.04, at the dimensionless time k=0, 1.6, 6.4, and 8. The
symbol @ represents the same Lagrangian node on the mem-
brane. From the results, it is seen that the capsule is under-
going flipping motion. It is elongated or compressed by the
shear flow periodically.

With a further increase in bending stiffness the flipping
motion continues, but the capsule is hardly deformed and
behaves like a rigid body. Figure 10 presents the capsule
contour for E,=0.4 and G=0.04 at k=0, 2, and 6.4. It is
seen that the capsule tumbles without visible shape changes.

Figure 11 presents the temporal evolution of the capsule
inclination angle for various bending modulus at G=0.04. It
is seen that without bending stiffness (E,=0), a steady tank-
treading mode is achieved; with a finite but small bending
stiffness (E,=0.005, 0.02, and 0.04), the capsule’s orienta-
tion undergoes oscillation with amplitude increasing as the
bending modulus increases. Further increasing the bending
rigidity (E,=0.06 and 0.4) causes the mode transition; that is,
the oscillation amplitude is larger than 7. Figure 11 shows

PHYSICAL REVIEW E 75, 066301 (2007)
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FIG. 10. Rotating and deforming of an elliptical capsule with
E,=0.4 at G=0.04.

that the transition happens between E;,=0.04 and 0.06. For a
rigid ellipse rotating in two-dimensional shear flow at van-
ishing Reynolds number, its orbit can be predicted by Jef-
fery’s theory [31]. The angular rotation is given by

0—tan‘1(rtan r_kt) (17)
- 1+72)

where r is the aspect ratio, which equals 2 in the present
study. Jeffery’s solution is plotted in Fig. 11. For E,=0.06,
the capsule is undergoing flipping motion. However, due to
its deformability, the result departs largely from Jeffery’s
theory. For E;,=0.4 when the deformation of the capsule is
small, reasonable quantitative agreement is observed, which
confirms that the capsule tumbles like a rigid body.

Simulation for capsules with various bending modulus for
dimensionless shear rate G=0.125 has also been carried out.
It was found that the behavior of the capsules is similar to
that for G=0.04. However, the critical bending modulus for
modes transition is higher.

—— E=0
— = = = E =0005
7777777 E,=0.02
E =004
E =006 N
041 E =04 ‘\
Jeffery [31]: \
02 N
/.\
)
|
B | I
@ 0 ‘ |
N\ '
%\ | b \\ I
0.2 % o
’ “\ | \ | :
a4 Pl |
o \i
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kt

FIG. 11. Evolution of inclination angle of capsules with the
elliptical initial shape as the minimum bending-energy configura-
tion at G=0.04.
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Through the above observations, it is found that with the
bending stiffness increasing, the motion of a capsule can be
divided into four sequential stages: (1) steady tank-treading
mode (at zero bending stiffness), (2) tank treading with ori-
entation oscillation and shape deformation (at finite but small
bending stiffness), (3) tumbling with periodic shape defor-
mation (at moderate bending stiffness), and (4) tumbling like
a rigid body (at large bending stiffness). The motion of the
capsule at stage 2 seems similar to the ‘“vacillating-
breathing” mode, which is theoretically predicted by Misbah
[8].

Without bending stiffness, the shear elasticity of the cap-
sule membrane can only resist membrane in-plane stretching.
Thus the shear torque can be easily transferred to the mem-
brane, which will lead to steady tank-treading motion. How-
ever, transition to tumbling may be triggered for cases where
(i) the viscosity contrast is large enough [7,11,13,14], and (ii)
the membrane viscosity is increased [15,16]. In both cases
due to the fact that the viscosity increases, the transfer of
shear torque to the membrane becomes more and more dif-
ficult; and then the capsule would behave like a solid body
which undergoes tumbling.

In this section, the elliptical capsule’s initial shape is the
minimum bending-energy shape. Due to the bending stiff-
ness, the membrane’s instantaneous curvature «(I) must keep
akin to «(I), the curvature of the elliptical shape. This will
restrict the deformability of the capsule. In shear flow, with
the bending stiffness increasing, it becomes more and more
difficult for the capsule to deform. Thus it becomes more
difficult for the shear torque to be transferred to the mem-
brane; and then the capsule will undergo flipping motion.
With a large bending stiffness, the capsule is hardly able to
deform and thus flips like a rigid body.

C. Initially biconcave capsules

The biconcave capsule has an initial shape [32] given by

X=aasin y,

y= ag(0.207 +2.003 sin® y — 1.123 sin* y)cos x, (18)

where « is the cell radius ratio which equals 1.39 for a red
blood cell, and the parameter y ranges from —0.57 to 1.57.
This shape is the cross section of a three-dimensional red
blood cell with equivalent radius a. Its two-dimensional
equivalent radius is 0.74a. The capsules are initially un-
stressed concerning the in-plane tension. Various minimum
bending-energy configurations, including uniform curvature
shapes (circle and flat plate) and nonuniform curvature shape
(the initially biconcave configuration) are studied. The com-
putational domain, block system, and mesh resolutions are
the same as that in previous sections. The characteristic
length is the equivalent diameter of the biconcave capsule,
which equals 1.48a. The characteristic velocity is 1.48ka and
the Reynolds number is at 0.027.

The deformation of capsules with circular minimum
bending-energy shape is first considered. The area of the
circle is the same as that of the biconcave capsule. Figure 12
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(@) (b)

FIG. 12. Equilibrium shapes of biconcave capsules with reduced
bending modulus E,=0 (a), 0.005 (b), 0.02 (c), and 0.1 (d) at G
=0.025.

presents the configurations of steady deformed capsules with
the reduced bending modulus increasing up to 0.1, at the
dimensionless shear rate G=0.025. The rounding effect is
apparent. As the bending modulus increases, the circularity
of the steady deformed capsules increases. Capsules with flat
resting shape concerning the bending moments have also
been studied. A similar phenomenon was observed.

Also studied is the deformation of capsules with the ini-
tially biconcave shape as the minimum bending-energy con-
figuration. Figure 13 presents the capsule profiles at different
times for £,=0.015 and G=0.025. From the results it is seen
that the capsule still carries out motion of the tank-treading
mode. Protrusions develop along the membrane and rotate
around the internal liquid. The animation of the capsule con-
figurations shows that the capsule inclination is undergoing
periodic oscillation while the membrane rotates. The oscilla-
tion amplitude increases with the bending modulus increas-

—eo—— kt=12.24
— —e — kt=17.64
@ Kt =23.04

FIG. 13. Tank treading and deforming of a biconcave capsule
with E,=0.015 at G=0.025.
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() (b) ()

)

FIG. 14. Rotating and deforming of a bicon-

(d) (©

%

ing and finally the motion changes to flipping mode.

Figure 14 presents a family of capsule contours for E,
=0.02 at the dimensionless time kt=0, 1.26, 7.38, 14.22, and
15.66. The results show that the capsule is tumbling continu-
ously. The animation of the capsule contours shows that the
flipping motion is accompanied by periodic deformation. The
capsule is elongated [illustrated in Fig. 14(b)] or compressed
[illustrated in Fig. 14(d)] by the shear flow. Further increas-
ing the bending stiffness makes the capsule carry out rigid-
body-like flipping motion, which resembles Jeffery’s mode,
as illustrated in Fig. 15 for E,=0.2.

Figure 16(a) presents the temporal evolution of the cap-
sule inclination angle for various bending modulus at G
=0.025. It is seen that for low bending modulus, the inclina-
tion is undergoing small oscillations. The oscillation ampli-
tude increases as the bending modulus increases, and finally
causes the change from tank treading to flipping modes. The
result shows that this transition happens between E,=0.015
and 0.02. During the flipping motion, the capsule rotates
faster when perpendicular to the flow and slower when
aligned with the flow direction. For E,=0.2 in which the
deformation of the capsule is small, the orbit of the capsule
is compared with Jeffery’s theory. In Eq. (17), the aspect
ratio is determined following the approach in Refs. [1,11].

—e—— kt=0
e —

kt=1.44
- kt=9

FIG. 15. Rotating and deforming of a biconcave capsule with
E,=0.2 at G=0.025.

cave capsule with E,=0.02 at G=0.025. Corre-
sponding dimensionless times are kr=0 (a), 1.26
(b), 7.38 (c), 14.22 (d), and 15.66 (e).

That is, it is chosen so that the numerical flipping period
matches that predicted by theory. Satisfactory quantitative
agreement is observed in Fig. 16(a).

It has been shown in previous studies [10,17] that a bi-
concave capsule achieves a steady tank-treading mode with-
out bending stiffness. In the present section, a four-stage mo-
tion, similar to that in Sec. III B, is found for a biconcave

()

— — —~ E=0.005
E,=0.01

——————— E,=0.015

— — — - E=0.02

E=0.2]

L] Jefferylﬁl]

o/m

(b)

— — — - E=0.0004

——————— E,=0.001

———~ E=0.003

E,=0.02

Jeffety [31]
f\y

o/m

FIG. 16. Evolution of inclination angle of capsules with the
biconcave initial shape as the minimum bending-energy configura-
tion at (a) G=0.025 and (b) G=0.0025.
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capsule with various bending stiffness. The physical mecha-
nism should also be the same.

It is well known that the red blood cell membrane is
strongly resistant to area dilatation. The membrane model
employed here does allow area dilatation. However, the
present methodology allows incorporation of incompressible
membrane models. With the Hooke’s law used in the present
study, by increasing the membrane elasticity, a case with
membrane incompressibility can be approximated. This case
was studied with G=0.0025 under various bending stiffness.
The maximum membrane area change was within 0.5%. The
temporal evolution of the capsule inclination angle is pre-
sented in Fig. 16(b). The capsule motion is closely similar to
that for G=0.025 and so is the transition to flipping mode.
However, the critical bending modulus for motion transition
is lower.

IV. CONCLUSION

The effect of interfacial bending stiffness on the deforma-
tion of liquid capsules enclosed by elastic membranes in

PHYSICAL REVIEW E 75, 066301 (2007)

shear flow has been studied numerically, using an improved
immersed boundary-lattice Boltzmann method. Initially, cir-
cular, elliptical, and biconcave capsules with various mini-
mum bending-energy shapes, including circular, flat plate, or
their initially resting shapes have been studied. The results
show that for capsules with minimum bending-energy con-
figurations having uniform curvature (circular, flat plate), the
steady deformed shapes are more rounded with increasing
bending stiffness. For initially elliptical and biconcave cap-
sules with their initial configurations as the minimum
bending-energy shapes, it is interesting to find that with the
bending stiffness increasing, the capsules’ behavior changes
from tank-treading mode to flipping mode, and achieves Jef-
fery’s flipping mode with a large bending stiffness. The
present study shows that, besides viscosity ratio and mem-
brane viscosity, the membrane bending stiffness may be an-
other factor which can lead to the transition of a capsule’s
motion from tank treading to flipping.
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